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The different algebraic and geometric stability criteria pre-
suppose particular algebraic and function-theoretic knowledge with
which every engineer is not familiar. Besides, the relation between
the application of these criteria and their derivation is not so
simple that it is possible to have this relation present during its
application. For the following simply established stability criterion,
the contribution is easily realized that each step of the calcula-
tion answers the stability question.

The close connection of this criteria with the criterion of J.
Schur is given at the end.

We limit ourselves: to the most important engineering case of
positive real coefficients and introduce the positive real parameter
Ay into the polynomial equation

s(p) = g(p) + b(p) =0 (1)

formed from

g(p) = co + c2p2 + c4pt + ...
and
h(p) = c1p + cap® + ¢p® + ...

in which we multiply h(p) by *j.



Ye obtaln
alp) = g(p) + »;h(p) =0 (2)
and state:
If Op =0 has

N, roots with positive real part (R>0)

Nz roots with negative real part (R<0)

Na roots on the imaginary axis (R=0)
then ‘Nkl(P) has Just so many roots in each of the two half-planes
and on the imaginary axis. By means of the introduction of A3, no
roots can leave the imaginary axis or cross or move on the imaginary
axis., This follows simply from the theorem that the position of the

intersection of the root curves

P(X,Y) = 0
(3)
Q(x,y) =0
of
(p) = P(x,y) + iQ(x,y) = O p=x+ iy

with +the imaginary axis is independent of A;>0.
These intersection points ¥y are ylelded as roots of equation
(3) for x = 0; the equations are
Po(y) = co - czy® + cayt - ... =0
Qq(y = c,y; - Ca¥> ¥ Cs¥® - ce0 =0
By this means, the equations of the root curves for Akl(P) differ
from those for A(p) only in that Qo(y) is multiplied by A\ ,.

The root curves of A(p) and M),(p) therefore cut the imaginary

axls in the same points as those denoted in the representation of
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he first example many times. Ng therefore has the same value for
equations (1) and (?).

Since. further the roots of (1) are continuous functions of the
equatinns of the coefficients then no rea! part of a root of A(p)
can change its sign because of the introduction of Aj. Namely‘ if
a root can cross the imaginary axis, then it must also give a value
of A for which R=C. This is impossible, however, since X\,
leares invariant the intersecti-n of the rnot curves with the imagin-
ar> axis.

Par trhe ensver to the stability question, therefore, (1) can be
replaced hy (2). ¥ow, in (2) set

N g(p,) CotCoDy 2+C 4D % +e s
l—_v—- e

h(p,) 1P +C g0y Moo

vhere p; 1is a negative real, for example, P, = -1+ then

My (P) = &(p)+h(py) - glpin(p) =0 (3)
This expression vanishes for ©p - p1}j it is therefore divisible by
D - Pp. 8n that we obtain the equatinn »f (n-1)st degree

gip)a(m ) -g (v Yu(p)

n (p) =
P-P1
(6)
= g1(p)+h (p) = O
“hat has in the negative half-plane one root less than the initial
equation: we have to force it by means of a choice of the parameter
A1 nearest to the root pi, which we have then split off.

If (6) prodices a sign change then one ~ust proceed with (6)

as with (') whereby, however. onc can svlit off alsn another arbitrary
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real negative root of p; (p1¥ -1).0ne thus obtains an equation of
degree n-2 with the number of roots N,, Nj_,, N;. Therefore, one
has to form

M5(p) = g, (p) + 2 h, (D) (7)
with

-81(p1)

ho= =
2 pa(py)

and from (7)

5, (P)
2e(p) = _g_pl_ = 6(p) + 1y(p) = © (8)

The signs of Ap(p) determine the necessity of the formation of
Hg(P) .

These processes of reducing the degree of the preceding equa-
tion is continued as long as no sign change occurs in the reduced
equation, at most until an equation of second degree which is reached
after n-2 steps. If all the reduced equations are free of sign
changes, then N; = 0; since Ng 1s not changed by this procedure then
the sequence of equations Av(p) ends in that equation which has only
the pure imaginary roots of A(p), if A(p) possesses such roots.

In general, it i1s appropriate to set Py = -1 for all the reduction
steps, so that

CotCotCytae.

Ci"r03+05+. .

The necessary divisions by (p+l) are carried out by Horner's method.



-5«

Schur [1] classified the proposed polynomial A(p) of the n-th
degree with another A*(p) of the same degree, the roots of which
are mirror-images of the roots of A(p) with respect to the imag-
inary axis; he uses the expression already applied by Hermite [2]
for siwilar investigations

F(p,p1) = A%(py)A(p) - ax(p)a(py) = O (9)
for the reduction process. F(p,p;) is divisible by p-p;.

If, for real coefficients, one sets

A(p) = ag(p) + Bh(p)

A*(p) = axg(p) + Brh(p)
then
Pem) = [of B [y - eeinm)]
or
F(p,p1) = n(py) |2 & lee) - ele) h(p)]
’ tag Al h{py)

Expression (9) therefore corresponds to (2) or (5) respectively,
except for a constant factor.
First Example: Stable Case
Let the assumed equation bYe
3(p) = 8p° + 13p° + 120p" + 137p° + 450p° + 250p + 322 = O

For pi = -1,

- 322+4504+120+8 -

; 2.25
250+137+13

and Ay, (p) = 8p°% + 29.250° + 120p* + 308.250° + h50p® + 562.5p +

322 = 0
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As the figure of the root curves also shows, A),(p)- and especlally
M=(p), Mug(p) and  An,(p) - has the forced root py = -1; by means
of the introduction of X\ an original pair of complex roots degen-
erates into two real roots of which one (py) can be split off by
zicans of Horner's method.,
The method is ‘
8 29.25 120 308.25 450 562.5 322
-1 -8 -21.25 -98.75 -209.5 -2k0.5 -322
8 21.25 98.75209.5 240.5 322
Therefore the first reduced equation is
M (p) = 8p% + 21.25p% + 98.75p° + 209.5p° + 240.5p + 322 = g, (p) +
hi(p) = 0
For A, = 1.59
M (P) = 5896p° + 9838.75p* + T2778.75p° + 96998.65p% +
177248,5p + 149086 = 0
and
n,(p) = 5896p* + 3942.75p° + 68836p% + 28162.5p + 149086 = O
Similarly, for Az = 6.97
As(p) = p3 + 3.662p2 + 8.013p + 25.286 = 0
and for A, = 3.212
A (p) = P + 0.140p + 7.873 = g4(p) + he(p) = 0
Since in the series of Ay(p) none of these equations shows a sign
change, then A(p) has no roots R>0; since further, Au(p)
has no pure imaginary roots the limit case of stabllity is not dis-

cussed. Therefore, A(p) has only roots R<O.



-7 -

Second Example: Limit case of stability
A(p) = 607 + 4p® 4+ 8p° + 12p* +13p° + 1297 + 6p + b = O

reduces for A} = 8/7; Ao = 9/5; Ag = 7/2 to the reduced equations

M () = 8% + 20p° + up* + Lop® + BUp® + 20p + 28 = gy (p) +
h,(p) =0

ax(p) = bop~ + 140p* + 80p° + 280p° + LOp + 140 = galp) +
ha(p) = 0

Ag(p) = 2%p* + 56p° + 28 = g4(p) + hy(p) = O

with the double-root-pair p = *1i which is also a root-pair of Ap).
Third Example: Unstable case
The exarple given by Schur [1] i1s
Ap) = 8% + Up* + T° +5p2 +p+1=0
For \y = 5/8 we obtain
My (p) = bop® + 32p* + 35p° + hop® + 5p + 8 = 0

Horner's method

ho 32 35 b 5 8
-1 -ko 8 -43 3 -3
Lo -8 3 -3 8

yields, in 1ts last line, the coefficients of 4 (p) with a sign

change. Therefore, it produces instability.

1. J. Schur: Uber algebraische Gleichungen, die nur Wurzeln mit
negativen Realteilen besitzen., ZAMM 1 (1921) p. 307-311
2. Ch. Hermite: Extrait d'une lettre de M. Ch. Hermite. Crelles
Journal 52, 1854, pp. 39-51

Also- M. Bocher, Introduction to Higher algebra, 1910



